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About	this	talk

• There	are	tons	of	studies,	tools,	
research	results,…
• Only high-level	overview,	no claim
for completeness
• Only some is our work,	mostly
others

..	interspersed with personal	views.

..	and general comments on	the
scientific process.
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Why	Linux

Product	Line	Analysis	and
Reengineering	=	
– Extract information =>	Tool	building
– Make sense	of it
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Linux	as „model organism“

• Provides reference point
• Makes research comparable
• Allows (ideally)	to build on	each other
• Improves the scientific process
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Linux	as	a	case	study

History
– Reflections on	development process
„Cathedral and Bazaar“,	1997/1999

– Architecture Analysis	[BHB99]
– Evolution[GT00]
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Linux	as	a	case	study

First	analysis explicitly
addressing variability (afaik):

[AST+07]	B.	Adams,	K.	de	Schutter,	
H.	Tromp,	and W.	de	Meuter,	“The	
Evolution	of the Linux	Build
System”,	Electronic	Communication	
of the European	Association of
Software	Science	and Technology,	
vol.	8,	pp.	1–16,	2007.

Linux 2.6.0 build process
(phase vmlinux)



8AG	SSE02.10.17

Characteristics	of	Linux:	
• Large:	Linux	4.10	(Commit:	d528ae0	vom	16.03.2017)
– Code	size:	57.985	files	(VM:	1382,	Build:	2554,	Source:	57985)
– #	features	(variabilities):	~17.591
– Average	depth	of	feature	tree	(2012):	3.7	
– Median	of	branching	(2012):	85
• Size:	similar	to	large	industrial	product	lines

Linux	as	a	Product	Line	Case	Study

[LSB+10] [IF10]
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As	a	PL:
• Kconfig-based	variability	description:
– 3-valued	logic
– Also:	strings,	integer,	hexadecimals				(rarely	used)
– Invisible	features
• C-preprocessor-based	(including	partially	runtime)
• Make	(kbuild)	resolves	about	60%	of	variability

Linux	as	a	Product	Line	Case	Study

Actually	~20	PLs
(1	per	arch)
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Linux	as	a	proxy	for	industrial	research
• Compared	with	other	possible	case	study	repositories	(e.g.,	SPLOT)
– SPLOT	et	al.	do	not	originate	from	realistic	processes	[SL+10]
– Linux	(and	other	OS-examples)	are	broader,	much	higher	branching,	
fewer	feature	groups	[BS+13]

– ..

• But	is	this	similar	to	industrial?	
– On	the	code	level	similar	to	industrial	product	lines,	but	more	intensive	
use	of	preprocessor	[HZ+16]

– Tangling,	scattering,	nesting	similar
– Variability	model	?	Build	system	?	
– Usage	of	non-boolean variability?

Is	it	realistic?
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• There	seems	to	be	continuous	refactoring
– E.g.,	cyclomatic complexity	is	even	reducing

Linux:	Evolution	Characteristics
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• Verification	(global)
– Dead	Feature
– Undead	Feature
– Dead	Code
– Undead	Code
– Misconfiguration
– …
• Type-checking	(global)	
• Static	checking	(local,	based	on	covering)	
• Metrics-based	analysis
– Characterizations
– Security	defects
– ..

Linux:	Analysis
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Some	results	of	ours

02.10.17
©	Google	Maps +	own graphics

Steps	along	our	route
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• Lattice	for	representing	the	variability

Understanding	Source	Code

Source	code

[LAS+16]	D.	Lüdemann,	N.	Asad,	K.	Schmid,	and	C.	Voges,	Understanding	variable	code:	Reducing	the	complexity	
by	integrating	variability	information,	International	Conference	on	Software	Maintenance	and	Evolution	
(ICSME),	pp.	312–322,	2016.

Relation
Hasse Diagram

Elimination
based	on	

Variability	model
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• Observation:	
– Lattices	can	be	reused	based	on	inconsistency
– However:
§ Most	reductions	are	trivial	reductions	(X,	¬ X)
§ Total	number	of	reductions	is	not	high,	but	smaller	files	are	reduced	more

Understanding	Source	Code

[LAS+16]	
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• Observation:	
– Much	higher	percentage	of	reduction,	if	architecture-specific

Understanding	Source	Code

[LAS+16]	
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To	what	extend	to	commits	really	impact	variability
• Not	every	change	of	Kconfig	is	modifying	variability
• Not	every	change	of	code	in	an	#ifdef is	impacting	variability
• …

Evolution	Analysis	

./arch/x86/events/perf_event.h
780
781
782
783
784

#ifdef CONFIG_X86_32
return ip > PAGE_OFFSET;

#else
return (long)ip < 0;

#endif

Commit File
786
787
788
789
790

#ifdef CONFIG_X86_32
return ip > PAGE_OFFSET;

—#else
— return (long)ip < 0;
#endif

Change	to	variability
information

Change	to	non-variable	
information

Introduction	of
changes

Deletion	of
#else-block
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Analyzed commits
Changed code lines (artifact−specific information)
Changed code lines (variability information)
Changed build lines (artifact−specific information)

Changed build lines (variability information)
Changed model lines (artifact−specific information)
Changed model lines (variability information)

Changes	in	Variability	vs.	other	parts

Evolution	Analysis
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If	
• you	have	4	possible	configurations
• only	three	different	products

Is	this	a	problem?

Misconfigurations

Wednesday:	10:45	
An	Empirical	Study	of	Configuration	Mismatches	in	Linux
Sascha El-Sharkawy,	Adam	Krafczyk and	Klaus	Schmid
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Our	journey

What	was	it	like,	when	we	started?

02.10.17
©	Google	Maps +	own graphics
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Our	journey

Obviously,	we	were	not	the	first..
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Opportunities	for	reuse
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Reusing	existing	tools

What	we	expected	
What	we	found

• Well-documented
• Easy	to	use	and	reuse

Considerable	effort	for:
• Learning
• Applying
• Adapting
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Reusing	existing	tools

• Numerous	tools
– Extraction
§ Kconfig
§ Kbuild
§ Source-code

– For	analysis
– Understand	Evolution
– For	Visualization

• Issues:	
– What	exactly	is	analyzed?

(Correctness)
– Reliability
– Repeatability
– Transferability	
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• Kconfig-translation	is	the	way	to	include	variability	information	in	
analysis	and	other	processing

Analyzing	KConfig

KConfig Dimacs



29AG	SSE02.10.17

Analyzing	KConfig

Table 1: Systematic analysis (– = no change, x = not able to model this, a = clearly specified, = inconsistent
configurations, = inconsistent models, + = only graphical representation changed, = against specification)
S.	El-Sharkawy,	A.	Krafczyk,	K.	Schmid.	Analysing	the	Kconfig	Semantics	and	Its	Analysis	Tools.	International	Conference	
on	Generative	Programming:	Concepts	and	Experiences	(GPCE),	pp.	45-54,	2015.
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Analyzing	Kconfig-Tools

S.	El-Sharkawy,	A.	Krafczyk,	K.	Schmid.	Analysing	the	Kconfig	Semantics	and	Its	Analysis	Tools.	International	Conference	
on	Generative	Programming:	Concepts	and	Experiences	(GPCE),	pp.	45-54,	2015.
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• Various	tools
– Static	(parsing-based)
§ KbuildMiner
§ MakeX

– (partially)	dynamic
§ Golem

Analyzing	Kbuild

• Determines	lower	bound
• Fast

• Identifies	more	constraints
• More	robust

Degree	of	correctness?
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• Variability	Extraction

Analyzing	Source	Code

Possible	tools:	e.g.,	Undertaker,	TypeChef

DIMACS
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• Undertaker	(Block-extraction)
– Pros:	speed,	simplicity
– Cons:	
§ no	interpretation	of	header	files
§ no	dependency	resolution	of	#define	->	ifdef

• Typechef (parse-extraction)
– Much	slower	(and	needs	tons	of	memory)
– Full	AST	with	var.	annotation	
– Able	to	identify	indirect	variability	(e.g.,	variable	parameter	in	array)
– Can	identify	that #if	0		does	not	contain	code

Analyzing	Source	Code
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Where	are	we?	

• Many	tools	available,	but
– Difficult	to	use
– Comparisons	hard	to	make
• Many	analysis	performed	(more	to	do)
• Studies	often hard (if not	impossible)	to
replicate
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• Simple	/	Systematic	tool	reuse
• Documentation	&	Replication	built	in
• Easy	to	set	up	and	run	alternatives

What	we	want

We	call	it	

Experimentation	
Workbench
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• Scope:		Product	Line	Analysis	(not	only	Linux)
• Capabilities:
– Documentation
– Takes	care	of	technical	aspects	(e.g.,	parallelization)
– Highly	configurable	
– Portable
• Existing	plugins	(public)	
– KConfigReader
– Kbuildminer
– Typechef,	Undertaker
– Feature-Effect-Analysis,	
Metrics	support,	Undead	Code

KernelHaven

https://github.com/KernelHaven



38AG	SSE02.10.17

KernelHaven
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KernelHaven Architecture Dead	Code	Analysis	Instance

Auto-Archiving	covers:	
Inputs,	outputs,	all	code	



• Goal	=	Facilitate
– Experimentation	in	Product	Line	Analysis
– Replication	(3rd party	and	others)
– Inspection	/	analysis	of	results	&	approaches
– Jump-start	for	others
– Focus	on	the	technical	/	scientific	core

39AG	SSE02.10.17

Kernelhaven
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Summary

5AG	SSE22.09.17

The	scientific	process
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If	
• you	have	4	possible	configurations
• only	three	different	products

Is	this	a	problem?

Misconfigurations

Wednesday:	10:45	
An	Empirical	Study	of	Configuration	Mismatches	in	Linux
Sascha El-Sharkawy,	Adam	Krafczyk and	Klaus	Schmid
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Analyzing	Kconfig-Tools

S.	El-Sharkawy,	A.	Krafczyk,	K.	Schmid.	Analysing	the	Kconfig	Semantics	and	Its	Analysis	Tools.	International	Conference	
on	Generative	Programming:	Concepts	and	Experiences	(GPCE),	pp.	45-54,	2015.
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• There	seems	to	be	continuous	refactoring
– E.g.,	cyclomatic complexity	is	even	reducing

Linux:	Evolution	Characteristics
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KernelHaven
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• Availability	of	KernelHaven infrastructure:	open	source	at
https://github.com/KernelHaven

• There	you	also	find	a	number	of	plugins	already	(more	to	come):
– Extractors:	TypeChef,	KconfigReader,	KbuildMiner,	Undertaker
– Analysis:	Metrics,	UnDead,	FeatureEffect,…

Acknowledgement:	The	research leading to these results has received funding from
the ITEA3	project 15010	REVaMP²,	which is co-funded in	part by the national	
funding agencies in	various countries,	including BMBF	(German	Ministry of
Research	and Education)	under grant 01IS16042H in	Germany.

More	information
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