
www.sse.uni-hildesheim.de

Software	Systems	Engineering
University	of	Hildesheim

schmid@sse.uni-hildesheim.de

Klaus	Schmid

Understanding	Linux	– pictures from a	journey in	
product line analysis and evolution



2AG	SSE02.10.17

About	this	talk

• There	are	tons	of	studies,	tools,	
research	results,…
• Only high-level	overview,	no claim
for completeness
• Only some is our work,	mostly
others

..	interspersed with personal	views.

..	and general comments on	the
scientific process.



3AG	SSE02.10.17

Why	Linux

Product	Line	Analysis	and
Reengineering	=	
– Extract information =>	Tool	building
– Make sense	of it



2AG	SSE02.10.17

Linux	as „model organism“

• Provides reference point
• Makes research comparable
• Allows (ideally)	to build on	each other
• Improves the scientific process



6AG	SSE02.10.17

Linux	as	a	case	study

History
– Reflections on	development process
„Cathedral and Bazaar“,	1997/1999

– Architecture Analysis	[BHB99]
– Evolution[GT00]



7AG	SSE02.10.17

Linux	as	a	case	study

First	analysis explicitly
addressing variability (afaik):

[AST+07]	B.	Adams,	K.	de	Schutter,	
H.	Tromp,	and W.	de	Meuter,	“The	
Evolution	of the Linux	Build
System”,	Electronic	Communication	
of the European	Association of
Software	Science	and Technology,	
vol.	8,	pp.	1–16,	2007.

Linux 2.6.0 build process
(phase vmlinux)



8AG	SSE02.10.17

Characteristics	of	Linux:	
• Large:	Linux	4.10	(Commit:	d528ae0	vom	16.03.2017)
– Code	size:	57.985	files	(VM:	1382,	Build:	2554,	Source:	57985)
– #	features	(variabilities):	~17.591
– Average	depth	of	feature	tree	(2012):	3.7	
– Median	of	branching	(2012):	85
• Size:	similar	to	large	industrial	product	lines

Linux	as	a	Product	Line	Case	Study

[LSB+10] [IF10]



9AG	SSE02.10.17

As	a	PL:
• Kconfig-based	variability	description:
– 3-valued	logic
– Also:	strings,	integer,	hexadecimals				(rarely	used)
– Invisible	features
• C-preprocessor-based	(including	partially	runtime)
• Make	(kbuild)	resolves	about	60%	of	variability

Linux	as	a	Product	Line	Case	Study

Actually	~20	PLs
(1	per	arch)



11AG	SSE02.10.17

Linux	as	a	proxy	for	industrial	research
• Compared	with	other	possible	case	study	repositories	(e.g.,	SPLOT)
– SPLOT	et	al.	do	not	originate	from	realistic	processes	[SL+10]
– Linux	(and	other	OS-examples)	are	broader,	much	higher	branching,	
fewer	feature	groups	[BS+13]

– ..

• But	is	this	similar	to	industrial?	
– On	the	code	level	similar	to	industrial	product	lines,	but	more	intensive	
use	of	preprocessor	[HZ+16]

– Tangling,	scattering,	nesting	similar
– Variability	model	?	Build	system	?	
– Usage	of	non-boolean variability?

Is	it	realistic?



12AG	SSE02.10.17

• There	seems	to	be	continuous	refactoring
– E.g.,	cyclomatic complexity	is	even	reducing

Linux:	Evolution	Characteristics



13AG	SSE02.10.17

• Verification	(global)
– Dead	Feature
– Undead	Feature
– Dead	Code
– Undead	Code
– Misconfiguration
– …
• Type-checking	(global)	
• Static	checking	(local,	based	on	covering)	
• Metrics-based	analysis
– Characterizations
– Security	defects
– ..

Linux:	Analysis



14AG	SSE

Some	results	of	ours

02.10.17
©	Google	Maps +	own graphics

Steps	along	our	route



15AG	SSE02.10.17

• Lattice	for	representing	the	variability

Understanding	Source	Code

Source	code

[LAS+16]	D.	Lüdemann,	N.	Asad,	K.	Schmid,	and	C.	Voges,	Understanding	variable	code:	Reducing	the	complexity	
by	integrating	variability	information,	International	Conference	on	Software	Maintenance	and	Evolution	
(ICSME),	pp.	312–322,	2016.

Relation
Hasse Diagram

Elimination
based	on	

Variability	model



16AG	SSE02.10.17

• Observation:	
– Lattices	can	be	reused	based	on	inconsistency
– However:
§ Most	reductions	are	trivial	reductions	(X,	¬ X)
§ Total	number	of	reductions	is	not	high,	but	smaller	files	are	reduced	more

Understanding	Source	Code

[LAS+16]	



17AG	SSE02.10.17

• Observation:	
– Much	higher	percentage	of	reduction,	if	architecture-specific

Understanding	Source	Code

[LAS+16]	



18AG	SSE02.10.17

To	what	extend	to	commits	really	impact	variability
• Not	every	change	of	Kconfig	is	modifying	variability
• Not	every	change	of	code	in	an	#ifdef is	impacting	variability
• …

Evolution	Analysis	

./arch/x86/events/perf_event.h
780
781
782
783
784

#ifdef CONFIG_X86_32
return ip > PAGE_OFFSET;

#else
return (long)ip < 0;

#endif

Commit File
786
787
788
789
790

#ifdef CONFIG_X86_32
return ip > PAGE_OFFSET;

—#else
— return (long)ip < 0;
#endif

Change	to	variability
information

Change	to	non-variable	
information

Introduction	of
changes

Deletion	of
#else-block



19AG	SSE02.10.17

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Year

N
um

be
r o

f E
le

m
en

ts

1
10

00
10

00
00

0
10

00
00

00
00

14915 28352 29317 48999 50401 47772 52919 62128 67925 72418 71860 73187 12408

●

● ●

● ●
●

● ●
● ● ●

●

●

●

●
●

●
●

●
● ●

● ● ●
●

●

●

●

Legend

Analyzed commits
Changed code lines (artifact−specific information)
Changed code lines (variability information)
Changed build lines (artifact−specific information)

Changed build lines (variability information)
Changed model lines (artifact−specific information)
Changed model lines (variability information)

Changes	in	Variability	vs.	other	parts

Evolution	Analysis



20AG	SSE02.10.17

If	
• you	have	4	possible	configurations
• only	three	different	products

Is	this	a	problem?

Misconfigurations

Wednesday:	10:45	
An	Empirical	Study	of	Configuration	Mismatches	in	Linux
Sascha El-Sharkawy,	Adam	Krafczyk and	Klaus	Schmid



21AG	SSE

Our	journey

What	was	it	like,	when	we	started?

02.10.17
©	Google	Maps +	own graphics



22AG	SSE02.10.17

Our	journey

Obviously,	we	were	not	the	first..



23AG	SSE02.10.17

Opportunities	for	reuse



24AG	SSE02.10.17

Reusing	existing	tools

What	we	expected	
What	we	found

• Well-documented
• Easy	to	use	and	reuse

Considerable	effort	for:
• Learning
• Applying
• Adapting



25AG	SSE02.10.17

Reusing	existing	tools

• Numerous	tools
– Extraction
§ Kconfig
§ Kbuild
§ Source-code

– For	analysis
– Understand	Evolution
– For	Visualization

• Issues:	
– What	exactly	is	analyzed?

(Correctness)
– Reliability
– Repeatability
– Transferability	



28AG	SSE02.10.17

• Kconfig-translation	is	the	way	to	include	variability	information	in	
analysis	and	other	processing

Analyzing	KConfig

KConfig Dimacs



29AG	SSE02.10.17

Analyzing	KConfig

Table 1: Systematic analysis (– = no change, x = not able to model this, a = clearly specified, = inconsistent
configurations, = inconsistent models, + = only graphical representation changed, = against specification)
S.	El-Sharkawy,	A.	Krafczyk,	K.	Schmid.	Analysing	the	Kconfig	Semantics	and	Its	Analysis	Tools.	International	Conference	
on	Generative	Programming:	Concepts	and	Experiences	(GPCE),	pp.	45-54,	2015.



30AG	SSE02.10.17

Analyzing	Kconfig-Tools

S.	El-Sharkawy,	A.	Krafczyk,	K.	Schmid.	Analysing	the	Kconfig	Semantics	and	Its	Analysis	Tools.	International	Conference	
on	Generative	Programming:	Concepts	and	Experiences	(GPCE),	pp.	45-54,	2015.



31AG	SSE02.10.17

• Various	tools
– Static	(parsing-based)
§ KbuildMiner
§ MakeX

– (partially)	dynamic
§ Golem

Analyzing	Kbuild

• Determines	lower	bound
• Fast

• Identifies	more	constraints
• More	robust

Degree	of	correctness?



32AG	SSE02.10.17

• Variability	Extraction

Analyzing	Source	Code

Possible	tools:	e.g.,	Undertaker,	TypeChef

DIMACS



33AG	SSE02.10.17

• Undertaker	(Block-extraction)
– Pros:	speed,	simplicity
– Cons:	
§ no	interpretation	of	header	files
§ no	dependency	resolution	of	#define	->	ifdef

• Typechef (parse-extraction)
– Much	slower	(and	needs	tons	of	memory)
– Full	AST	with	var.	annotation	
– Able	to	identify	indirect	variability	(e.g.,	variable	parameter	in	array)
– Can	identify	that #if	0		does	not	contain	code

Analyzing	Source	Code



35AG	SSE02.10.17

Where	are	we?	

• Many	tools	available,	but
– Difficult	to	use
– Comparisons	hard	to	make
• Many	analysis	performed	(more	to	do)
• Studies	often hard (if not	impossible)	to
replicate



36AG	SSE02.10.17

• Simple	/	Systematic	tool	reuse
• Documentation	&	Replication	built	in
• Easy	to	set	up	and	run	alternatives

What	we	want

We	call	it	

Experimentation	
Workbench



37AG	SSE02.10.17

• Scope:		Product	Line	Analysis	(not	only	Linux)
• Capabilities:
– Documentation
– Takes	care	of	technical	aspects	(e.g.,	parallelization)
– Highly	configurable	
– Portable
• Existing	plugins	(public)	
– KConfigReader
– Kbuildminer
– Typechef,	Undertaker
– Feature-Effect-Analysis,	
Metrics	support,	Undead	Code

KernelHaven

https://github.com/KernelHaven



38AG	SSE02.10.17

KernelHaven

Extractors Data Models Analyses

Code Extractor

Build Extractor

Variability Model
Extractor

Element Tree

Mapping

p	cnf 3	2
1	-2	0
-3	2	0

Variables and
Constraints

Analysis
Analysis

Analysis
Analysis
Analysis

Pipeline Configurator

Code Files

Build Files

Variability Model
Files

Configuration File

PC

Extractors Data Models Analyses

Undertaker

KconfigReader

Element Tree

p	cnf 3	2
1	-2	0
-3	2	0

Variables and
Constraints

Analysis
Analysis

Dead Code
Analysis
Analysis

Pipeline Configurator

Code Files

Variability Model
Files

Configuration File

Framework	
Instantiation

KernelHaven Architecture Dead	Code	Analysis	Instance

Auto-Archiving	covers:	
Inputs,	outputs,	all	code	



• Goal	=	Facilitate
– Experimentation	in	Product	Line	Analysis
– Replication	(3rd party	and	others)
– Inspection	/	analysis	of	results	&	approaches
– Jump-start	for	others
– Focus	on	the	technical	/	scientific	core

39AG	SSE02.10.17

Kernelhaven



40AG	SSE02.10.17

Summary

5AG	SSE22.09.17

The	scientific	process

17AG	SSE22.09.17

If	
• you	have	4	possible	configurations
• only	three	different	products

Is	this	a	problem?

Misconfigurations

Wednesday:	10:45	
An	Empirical	Study	of	Configuration	Mismatches	in	Linux
Sascha El-Sharkawy,	Adam	Krafczyk and	Klaus	Schmid

26AG	SSE22.09.17

Analyzing	Kconfig-Tools

S.	El-Sharkawy,	A.	Krafczyk,	K.	Schmid.	Analysing	the	Kconfig	Semantics	and	Its	Analysis	Tools.	International	Conference	
on	Generative	Programming:	Concepts	and	Experiences	(GPCE),	pp.	45-54,	2015.

11AG	SSE24.09.17

• There	seems	to	be	continuous	refactoring
– E.g.,	cyclomatic complexity	is	even	reducing

Linux:	Evolution	Characteristics

34AG	SSE22.09.17

KernelHaven

Extractors Data Models Analyses

Code Extractor

Build Extractor

Variability Model
Extractor

Element Tree

Mapping

p	cnf 3	2
1	-2	0
-3	2	0

Variables and
Constraints

Analysis
Analysis

Analysis
Analysis
Analysis

Pipeline Configurator

Code Files

Build Files

Variability Model
Files

Configuration File

PC

Extractors Data Models Analyses

Undertaker

KconfigReader

Element Tree

p	cnf 3	2
1	-2	0
-3	2	0

Variables and
Constraints

Analysis
Analysis

Dead Code
Analysis
Analysis

Pipeline Configurator

Code Files

Variability Model
Files

Configuration File

Framework	
Instantiation

KernelHaven Architecture Dead	Code	Analysis	Instance

Auto-Archiving	covers:	
Inputs,	outputs,	all	code	



41AG	SSE02.10.17

• Availability	of	KernelHaven infrastructure:	open	source	at
https://github.com/KernelHaven

• There	you	also	find	a	number	of	plugins	already	(more	to	come):
– Extractors:	TypeChef,	KconfigReader,	KbuildMiner,	Undertaker
– Analysis:	Metrics,	UnDead,	FeatureEffect,…

Acknowledgement:	The	research leading to these results has received funding from
the ITEA3	project 15010	REVaMP²,	which is co-funded in	part by the national	
funding agencies in	various countries,	including BMBF	(German	Ministry of
Research	and Education)	under grant 01IS16042H in	Germany.

More	information



42AG	SSE02.10.17

[IF10]	A.	Israeli,	D.	Feitelson.	The	Linux	kernel	as	a	case	study	in	software	evolution.	Journal	of	
Systems	and	Software,	Elsevier,		Vol.	83,	485-501,	2010.

[LSB+10]	R.	Lotufo,	S.	She,	T.	Berger,	K.	Czarnecki,	A.	Wasowski.	Evolution	of	the	Linux	Kernel	
Variability	Model,	nternational Conference	on	Software	Product	Lines,	Springer,	136-150,	
2010.

[Ray]		E.	Raymond.	The	Cathedral	and	The	Bazaar,	http://www.catb.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/index.html,	Last	Retrieved	26.9.2017.

[AST+07]	B.	Adams,	K.	de	Schutter,	H.	Tromp,	and	W.	de	Meuter,	“The	Evolution	of	the	Linux	Build	
System”,	Electronic	Communication	of	the	European	Association	of	Software	Science	and	
Technology,	vol.	8,	pp.	1–16,	2007.

[BHB99]	I.	Bowman,	R.	Holt,	N.	Brewster.	Linux	as	a	case	study:	Its	extracted	software	architecture	
Proceedings	of	the	21st	international	conference	on	Software	engineering,	555-563,	1999.

[GT00]	M.	Godfrey,	Q.	Tu.	Evolution	in	Open	Source	Software:	A	Case	Study	Proceedings	of	the	
International	Conference	on	Software	Maintenance,	IEEE	Computer	Society,	131-142,	2000.

[LAS+16]	D.	Lüdemann,	N.	Asad,	K.	Schmid,	and	C.	Voges,	Understanding	variable	code:	Reducing	
the	complexity	by	integrating	variability	information,	International	Conference	on	Software	
Maintenance	and	Evolution	(ICSME),	pp.	312–322,	2016.	

[EKS17]	Sascha El-Sharkawy,	Adam	Krafczyk and	Klaus	Schmid,		"An	Empirical	Study	of	Configuration	
Mismatches	in	Linux”,	International	Software	Product	Line	Conference	(SPLC)	2017,	pp.	19-28,	
ACM,	2017.

References


